Universal Quantum Gate Set Approaching Fault-Tolerant Thresholds with Superconducting Qubits

Jerry M. Chow, Jay M. Gambetta, A. D. Córcoles, Seth T. Merkel, John A. Smolin, Chad Rigetti, S. Poletto, George A. Keefe, Mary B. Rothwell, J. R. Rozen, Mark B. Ketchen, and M. Steffen
Phys. Rev. Lett. 109, 060501 – Published 9 August 2012
PDFHTMLExport Citation

Abstract

We use quantum process tomography to characterize a full universal set of all-microwave gates on two superconducting single-frequency single-junction transmon qubits. All extracted gate fidelities, including those for Clifford group generators, single-qubit π/4 and π/8 rotations, and a two-qubit controlled-not, exceed 95% (98%), without (with) subtracting state preparation and measurement errors. Furthermore, we introduce a process map representation in the Pauli basis which is visually efficient and informative. This high-fidelity gate set serves as a critical building block towards scalable architectures of superconducting qubits for error correction schemes and pushes up on the known limits of quantum gate characterization.

  • Figure
  • Figure
  • Figure
  • Figure
  • Received 5 March 2012

DOI:https://doi.org/10.1103/PhysRevLett.109.060501

© 2012 American Physical Society

Authors & Affiliations

Article Text (Subscription Required)

Click to Expand

Supplemental Material (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 109, Iss. 6 — 10 August 2012

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Letters

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×