Thermalization in a Coherently Driven Ensemble of Two-Level Systems

Igor Lesanovsky, Beatriz Olmos, and Juan P. Garrahan
Phys. Rev. Lett. 105, 100603 – Published 1 September 2010

Abstract

We investigate the coherent quantum time evolution of a driven mesoscopic chain of two-level systems that interact via the van der Waals interaction in their excited state. The Hamiltonian is the sum of a classical lattice gas Hamiltonian and an off-diagonal driving term without classical counterpart. Starting from a product state we observe—beyond a certain interaction strength—thermalization of the system with respect to observables of the classical lattice gas. This transition can be studied experimentally with Rydberg atoms, ions, or polar molecules. We suggest how to experimentally determine the temperature of the thermal state which should allow for thermometry of the internal degrees of freedom of cold Rydberg gases whose external dynamics is frozen.

  • Figure
  • Figure
  • Figure
  • Figure
  • Received 26 April 2010

DOI:https://doi.org/10.1103/PhysRevLett.105.100603

© 2010 The American Physical Society

Authors & Affiliations

Igor Lesanovsky, Beatriz Olmos, and Juan P. Garrahan

  • School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, United Kingdom

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 105, Iss. 10 — 3 September 2010

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Letters

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×