Spin and Charge Transport on the Surface of a Topological Insulator

A. A. Burkov and D. G. Hawthorn
Phys. Rev. Lett. 105, 066802 – Published 6 August 2010

Abstract

We derive diffusion equations, which describe spin-charge coupled transport on the helical metal surface of a three-dimensional topological insulator. The main feature of these equations is a large magnitude of the spin-charge coupling, which leads to interesting and observable effects. In particular, we predict a new magnetoresistance effect, which manifests in a non-Ohmic correction to a voltage drop between a ferromagnetic spin-polarized electrode and a nonmagnetic electrode, placed on top of the helical metal. This correction is proportional to the cross product of the spin polarization of the ferromagnetic electrode and the charge current between the two electrodes. We also demonstrate tunability of this effect by applying a gate voltage, which makes it possible to operate the proposed device as a transistor.

  • Figure
  • Received 12 May 2010

DOI:https://doi.org/10.1103/PhysRevLett.105.066802

© 2010 The American Physical Society

Authors & Affiliations

A. A. Burkov and D. G. Hawthorn

  • Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 105, Iss. 6 — 6 August 2010

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Letters

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×