High-Fidelity Transport of Trapped-Ion Qubits through an X-Junction Trap Array

R. B. Blakestad, C. Ospelkaus, A. P. VanDevender, J. M. Amini, J. Britton, D. Leibfried, and D. J. Wineland
Phys. Rev. Lett. 102, 153002 – Published 16 April 2009

Abstract

We report reliable transport of Be+9 ions through an “X junction” in a 2D trap array that includes a separate loading and reservoir zone. During transport the ion’s kinetic energy in its local well increases by only a few motional quanta and internal-state coherences are preserved. We also examine two sources of energy gain during transport: a particular radio-frequency noise heating mechanism and digital sampling noise. Such studies are important to achieve scaling in a trapped-ion quantum information processor.

  • Figure
  • Figure
  • Figure
  • Received 8 February 2009

DOI:https://doi.org/10.1103/PhysRevLett.102.153002

©2009 American Physical Society

Authors & Affiliations

R. B. Blakestad, C. Ospelkaus, A. P. VanDevender, J. M. Amini, J. Britton, D. Leibfried, and D. J. Wineland

  • National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80305, USA

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 102, Iss. 15 — 17 April 2009

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Letters

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×