• Open Access

Stability of jets and wakes confined by compliant walls

Ryan Poole and M. R. Turner
Phys. Rev. Fluids 8, 063901 – Published 5 June 2023

Abstract

A spatiotemporal stability analysis is conducted on a flow representing both jets and wakes, subject to confinement by identical compliant walls. The walls are placed at equal distances from the fluid center line for a range of wall and flow parameters. By following the position of special saddle points (pinch points) of the dispersion relation in the complex wave-number plane, the absolute and convective instability stability properties of the flow are determined for various system parameters. The compliant walls are shown to modify the shear-induced instabilities, which exist in the rigid wall case, as well as introduce new additional instabilities originating from the presence of the wall itself. It is observed that under certain system parameters, these wall-induced modes become the dominant instability present in the system and can induce an absolute instability into flows which are only convectively unstable when confined by rigid walls, as well as extending the region of absolute instability to large confinement parameters. Results are presented for both a piecewise linear velocity profile and a smooth velocity profile, with the results of the two studies in qualitative agreement.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
11 More
  • Received 29 November 2022
  • Accepted 16 May 2023

DOI:https://doi.org/10.1103/PhysRevFluids.8.063901

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Fluid Dynamics

Authors & Affiliations

Ryan Poole and M. R. Turner

  • School of Mathematics and Physics, University of Surrey, Guildford GU2 7XH, United Kingdom

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 8, Iss. 6 — June 2023

Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Fluids

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×