Ordered and disordered dynamics in inertialess stratified three-layer shear flows

J. P. Alexander and D. T. Papageorgiou
Phys. Rev. Fluids 7, 014804 – Published 28 January 2022

Abstract

Unlike inertialess two-layer shear flows, three-layer ones can become unstable to long-wave interfacial instabilities due to a resonance mechanism between the interfaces. This interaction is codified in this paper through a set of coupled nonlinear evolution equations derived here in the limit of strong surface tension. A number of parameters are employed to cover a fairly general range of three-layer shear flows driven by a constant pressure gradient. The equations are analyzed using a combination of linear and computational techniques, identifying two linear instability mechanisms noted in the literature previously. The first is a kinematic instability due to the viscosity jumps across fluid phases and the second is a counterintuitive diffusion-derived instability, known in the literature as the Majda-Pego instability and mostly studied for second order diffusion. In the present work it is fourth order, due to surface tension, making the problem mathematically much more challenging. Three unstable parameter regimes of interest are identified linearly and are explored nonlinearly via pseudospectral numerical simulations. For thin middle layers we find steady-state traveling waves or states with asymptotically thinning regions leading to interfacial contact. However, for thin upper or lower layers, complex spatiotemporal dynamics emerge at large times that are characterized by fast time oscillations of the near-wall interface and slow oscillations of that farther away. Data analysis suggests that the dynamics is quasiperiodic in time and additionally coarsening phenomena are observed for large domain sizes leading to modulated traveling wave trains. The kinematic instability mechanism is shown to be triggered nonlinearly via the Majda-Pego mechanism. It can also be triggered by sufficiently large amplitude initial disturbances where linear instabilities are absent, although the transition is not necessarily self-sustaining in all cases.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
14 More
  • Received 20 July 2021
  • Accepted 3 January 2022

DOI:https://doi.org/10.1103/PhysRevFluids.7.014804

©2022 American Physical Society

Physics Subject Headings (PhySH)

Fluid Dynamics

Authors & Affiliations

J. P. Alexander* and D. T. Papageorgiou

  • Department of Mathematics, Imperial College London, London SW7 2AZ, United Kingdom

  • *jpa13@ic.ac.uk

Article Text (Subscription Required)

Click to Expand

Supplemental Material (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 7, Iss. 1 — January 2022

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Fluids

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×