Thermal effect on drainage flow of a viscous gas from a semisealed narrow channel

Wei Huang and Kang Ping Chen
Phys. Rev. Fluids 4, 084202 – Published 12 August 2019

Abstract

Drainage flow of a viscous compressible gas from a semisealed narrow conduit is a pore-scale model for studying the fundamental flow physics of fluid recovery from a porous reservoir without fluid injection. The drainage flow is driven by the volumetric expansion of the gas and its mass flow rate has been found previously to be sliplike and proportional to the kinematic viscosity of the gas. Thermal effect on such a drainage flow is studied here by simultaneously solving the linearized continuity, momentum, and energy equations for a semisealed narrow channel with adiabatic walls. It is shown that even in the absence of an imposed temperature drop, gas expansion induces a transient temperature decrease inside the channel, which slows down the drainage process compared to the isothermal model and Lighthill's model. For a given density drop, gas drains out faster as the initial-to-final temperature ratio increases; the transient density can undershoot the final equilibrium value. It is concluded that thermal effect should be carefully considered in order to accurately predict the drainage rate.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
8 More
  • Received 15 April 2019

DOI:https://doi.org/10.1103/PhysRevFluids.4.084202

©2019 American Physical Society

Physics Subject Headings (PhySH)

Fluid Dynamics

Authors & Affiliations

Wei Huang and Kang Ping Chen*

  • School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287-6106, USA

  • *k.p.chen@asu.edu

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 4, Iss. 8 — August 2019

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Fluids

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×