Dynamics of gravity-driven viscoelastic films on wavy walls

Arjun Sharma, Prasun K. Ray, and Demetrios T. Papageorgiou
Phys. Rev. Fluids 4, 063305 – Published 24 June 2019

Abstract

The linear stability and nonlinear dynamics of viscoelastic liquid films flowing down inclined surfaces with sinusoidal topography are investigated. The Oldroyd-B constitutive model is used and numerical solutions of a long-wave nonlinear evolution equation for the film thickness, introduced by Dávalos-Orozco [L. A. Dávalos-Orozco, Stability of thin viscoelastic films falling down wavy walls, Interfacial Phenom. Heat Transfer 1, 301 (2013)], provide insight into the influence of elasticity and wall topography on the nonlinear film dynamics, while Floquet analysis of the linearized evolution equation is used to study the onset of linear instability. Focusing initially on inertialess films (with zero Reynolds number), linear stability results are organized into three regimes based on the wall wavelength. For sufficiently short and sufficiently long wall wavelengths, the onset of instability is not tangibly affected by the topography. There is however an intermediate range of wavelengths where, as the wall wavelength is increased, the critical Deborah number for the onset of instability first decreases (topography is destabilizing) and then increases sufficiently for topography to be stabilizing (relative to the flat wall). Solutions to a perturbation amplitude equation indicate that the character of the instability changes substantially within this intermediate range; topography induces streamwise variations in the base-state velocity at the free surface which couple with perturbations and substantially influence the instability growth rate. Very similar trends are observed for Newtonian films and variations in the critical Reynolds number. Simulations of the full nonlinear evolution equation produce a broad range of nonlinear states including traveling waves, time-periodic waves, and chaos. Perturbations to the film generally saturate at higher amplitudes for cases with larger linear growth rates, e.g., with increasing Deborah number or for a destabilizing wall wavelength, and topography introduces finer temporal scales in the dynamics. The qualitative influences of inclination and inertia on the nonlinear dynamics are shown to be simply related to the influence of elasticity using analytical linear stability results for the flat-wall case.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
11 More
  • Received 30 July 2018

DOI:https://doi.org/10.1103/PhysRevFluids.4.063305

©2019 American Physical Society

Physics Subject Headings (PhySH)

Fluid Dynamics

Authors & Affiliations

Arjun Sharma

  • Department of Aeronautics, Imperial College London, London SW7 2AZ, United Kingdom

Prasun K. Ray and Demetrios T. Papageorgiou

  • Department of Mathematics, Imperial College London, London SW7 2AZ, United Kingdom

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 4, Iss. 6 — June 2019

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Fluids

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×