Dynamics of particle migration in confined viscoelastic Poiseuille flows

Antoine Naillon, Clément de Loubens, William Chèvremont, Samuel Rouze, Marc Leonetti, and Hugues Bodiguel
Phys. Rev. Fluids 4, 053301 – Published 30 May 2019
PDFHTMLExport Citation

Abstract

Particles migrate in the transverse direction of the flow due to the existence of normal stress anisotropy in weakly viscoelastic liquids. We test the ability of theoretical predictions to predict the transverse velocity migration of particles in a confined Poiseuille flow according to the viscoelastic constitutive parameters of dilute polymer solutions. First, we carefully characterize the viscoelastic properties of two families of dilute polymer solutions at various concentrations using shear rheometry and capillary breakup experiments. Second, we develop a specific three-dimensional particle tracking velocimetry method to measure with a high accuracy the dynamics of particles focusing in flow for Weissenberg numbers Wi ranging from 102 to 101 and particle confinement β of 0.1 and 0.2. The results show unambiguously that the migration velocity scales as Wiβ2, as expected theoretically for weakly elastic flows of an Oldroyd-B liquid. We conclude that classic constitutive viscoelastic laws are relevant to predict particle migration in dilute polymer solutions whereas detailed analysis of our results reveals that theoretical models overestimate by a few tenths the efficiency of particle focusing.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 20 December 2018

DOI:https://doi.org/10.1103/PhysRevFluids.4.053301

©2019 American Physical Society

Physics Subject Headings (PhySH)

Fluid Dynamics

Authors & Affiliations

Antoine Naillon*, Clément de Loubens, William Chèvremont, Samuel Rouze, Marc Leonetti, and Hugues Bodiguel

  • Université Grenoble Alpes, CNRS, Grenoble INP, LRP, 38000 Grenoble, France

  • *antoine.naillon@univ-grenoble-alpes.fr

Article Text (Subscription Required)

Click to Expand

Supplemental Material (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 4, Iss. 5 — May 2019

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Fluids

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×