• Open Access

Analysis of the early stages of liquid-water-drop explosion by numerical simulation

Thomas Paula, Stefan Adami, and Nikolaus A. Adams
Phys. Rev. Fluids 4, 044003 – Published 15 April 2019

Abstract

The early stages of the shock-driven explosion of liquid-water microdrops are studied numerically with a high-resolution discretization of the axisymmetric Euler equations. A level-set based conservative interface-interaction method is extended to allow for phase transition. The method is applied to a configuration that has been investigated in recent experiments [Stan et al., Nat. Phys. 12, 966 (2016); Stan et al., J. Phys. Chem. Lett. 7, 2055 (2016)]. The presented results show that the numerical model predicts the initial stages of the violent liquid-drop explosion dynamics accurately. Our results indicate that the deformation of the cylindrical vapor cavity within the droplet is not induced by a torus-shaped negative-pressure wave as was implied from the experimental data. We rather find that this torus-shaped wave is a shock wave, and that the observed vapor-cavity deformation is caused by interaction with a negative-pressure region preceding the torus shock. The simulation results show deviations from experimental results at later stages when the drop deformation is dominated by off-center cavitation, i.e., by effects that require extension of the underlying model to take into account generalized nucleation and recondensation.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
7 More
  • Received 5 July 2018

DOI:https://doi.org/10.1103/PhysRevFluids.4.044003

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Fluid Dynamics

Authors & Affiliations

Thomas Paula*, Stefan Adami, and Nikolaus A. Adams

  • Technical University of Munich, Department of Mechanical Engineering, Chair of Aerodynamics and Fluid Mechanics, 85748 Garching, Germany

  • *thomas.paula@tum.de

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 4, Iss. 4 — April 2019

Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Fluids

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×