Cessation of a dense granular flow down an inclined plane

S. Bharathraj and V. Kumaran
Phys. Rev. Fluids 4, 024301 – Published 4 February 2019

Abstract

The cessation of a dense granular flow down an inclined plane upon decrease in the angle of inclination is studied using particle-based simulations for the linear and Hertzian particle contact models for ordered and disordered flows. The nature of the flow is examined by progressively decreasing the angle of inclination by fractions of a degree, with the objective of examining the range of angles for which the hard-particle model can be used to describe the flow and the nature of the flow dynamics very close to cessation where the hard-particle approximation fails. For a disordered flow, when the angle inclination exceeds the angle for flow cessation by about 0.5 for the linear contact model and about 1 for the Hertzian model, the flow is well described by Bagnold rheology, and the Bagnold coefficients are independent of layer height and the particle stiffness, implying that the flow dynamics is well described by the hard-particle approximation. When the angle of inclination exceeds the angle for flow cessation by less than 0.5 for the linear contact model and 1 for the Hertzian contact model, the flow transitions into a layered state consisting of a faster shearing zone of height about 30 particle diameters atop a bottom slowly shearing zone. There are sinusoidal oscillations in the velocity of the center of mass of the flow, and the period of these oscillations is proportional to the characteristic time for particle interactions, indicating that the particle contact time does affect the dynamics of the layered flow. The flow evolution is qualitatively different for an ordered flow. In this case, there is an abrupt transition from a Bagnold flow to a plug flow with sliding at the base when the angle of inclination is decreased by 0.05. There is no discernible intermediate flow regime where the particle contact time becomes relevant. We also examine the deceleration of the flow when the angle of inclination is decreased from a flowing state to a final angle below the cessation angle. The initial decrease in the flow velocity is exponential for both contact models and for all final angles of inclination. This is followed by a more rapid decrease to the static state. The time constant for the initial decrease is significantly higher for an ordered flow in comparison to a disordered flow. The time constant is independent of the contact model and particle stiffness, and increases with height proportional to h3/2, as expected for the hard-particle model.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
10 More
  • Received 15 June 2018

DOI:https://doi.org/10.1103/PhysRevFluids.4.024301

©2019 American Physical Society

Physics Subject Headings (PhySH)

Fluid Dynamics

Authors & Affiliations

S. Bharathraj and V. Kumaran

  • Department of Chemical Engineering, Indian Institute of Science, Bangalore 560 012, India

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 4, Iss. 2 — February 2019

Reuse & Permissions
Access Options
CHORUS

Article Available via CHORUS

Download Accepted Manuscript
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Fluids

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×