Expansion and retraction dynamics in drop-on-drop impacts on nonwetting surfaces

Maher Damak and Kripa Varanasi
Phys. Rev. Fluids 3, 093602 – Published 6 September 2018
PDFHTMLExport Citation

Abstract

Impacts of liquid droplets on other stationary droplets on a surface are ubiquitous in numerous applications such as agricultural sprays, inkjet printing, and rain impact on surfaces. We experimentally study the maximum expansion diameter and retraction rate in drop-on-drop impacts on superhydrophobic surfaces. We identify an inertial-capillary and a viscous regime for the expansion phase and we interpret the results using two distinct models. In the inertial-capillary regime, the first model predicts that the maximum diameter is set by an effective capillary length due to the deceleration upon impact. We introduce an effective diameter, velocity, and Weber number that allow the accurate determination of the maximum diameter in drop-on-drop impacts. We use our model to predict the transition to the viscous regime and rationalize the maximum diameter in this case with an energy balance. In our second model, we use an energy balance in both regimes and accurately predict the maximum diameter with a unified expression. We finally show that the retraction phase is a no-memory phenomenon and only depends on the volume of the coalesced droplet. We identify capillary and viscous regimes for the retraction and accurately model the retraction rate in each regime. Our approach provides a framework to characterize the dynamics of multiple-drop impacts.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 11 December 2017

DOI:https://doi.org/10.1103/PhysRevFluids.3.093602

©2018 American Physical Society

Physics Subject Headings (PhySH)

Fluid Dynamics

Authors & Affiliations

Maher Damak and Kripa Varanasi*

  • Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA

  • *Corresponding author: varanasi@mit.edu

Article Text (Subscription Required)

Click to Expand

Supplemental Material (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 3, Iss. 9 — September 2018

Reuse & Permissions
Access Options
CHORUS

Article Available via CHORUS

Download Accepted Manuscript
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Fluids

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×