Protein concentration gradients and switching diffusions

Paul C. Bressloff, Sean D. Lawley, and Patrick Murphy
Phys. Rev. E 99, 032409 – Published 7 March 2019

Abstract

Morphogen gradients play a vital role in developmental biology by enabling embryonic cells to infer their spatial location and determine their developmental fate accordingly. The standard mechanism for generating a morphogen gradient involves a morphogen being produced from a localized source and subsequently degrading. While this mechanism is effective over the length and time scales of tissue development, it fails over typical subcellular length scales due to the rapid dissipation of spatial asymmetries. In a recent theoretical work, we found an alternative mechanism for generating concentration gradients of diffusing molecules, in which the molecules switch between spatially constant diffusivities at switching rates that depend on the spatial location of a molecule. Independently, an experimental and computational study later found that Caenorhabditis elegans zygotes rely on this mechanism for cell polarization. In this paper, we extend our analysis of switching diffusivities to determine its role in protein concentration gradient formation. In particular, we determine how switching diffusivities modifies the standard theory and show how space-dependent switching diffusivities can yield a gradient in the absence of a localized source. Our mathematical analysis yields explicit formulas for the intracellular concentration gradient which closely match the results of previous experiments and numerical simulations.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 20 January 2019

DOI:https://doi.org/10.1103/PhysRevE.99.032409

©2019 American Physical Society

Physics Subject Headings (PhySH)

Physics of Living SystemsStatistical Physics & Thermodynamics

Authors & Affiliations

Paul C. Bressloff, Sean D. Lawley, and Patrick Murphy

  • Department of Mathematics, University of Utah, Salt Lake City, Utah 84112, USA

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 99, Iss. 3 — March 2019

Reuse & Permissions
Access Options
CHORUS

Article Available via CHORUS

Download Accepted Manuscript
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review E

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×