Optical admittance method for light-matter interaction in lossy planar resonators

Pyry Kivisaari, Mikko Partanen, and Jani Oksanen
Phys. Rev. E 98, 063304 – Published 4 December 2018

Abstract

Advanced optoelectronic simulation models are needed to study and optimize emerging photonic devices such as thin-film solar cells, lasers, and light-emitting diodes (LEDs). In particular, better tools are required for self-consistent modeling of coupled electrical and optical systems. The recently introduced quantized fluctuational electrodynamics (QFED) and the associated interference-exact radiative transfer equations have been developed for this purpose, but their use is in part complicated by the need to calculate the full dyadic Green's functions. To make QFED and the underlying physical quantities more accessible for new device studies, we introduce a directly usable method where Green's functions are obtained through optical admittances. The optical admittances can be solved analytically for piecewise-homogeneous layer structures and selected graded-index profiles, and numerically for arbitrary position-dependent refractive index profiles using well-known techniques. The solutions enable direct construction of the dyadic Green's functions and all the related optical quantities. To give examples of the general applicability of the method, we calculate the local and nonlocal optical densities of states for selected devices, including GaN-based flip-chip LEDs and vertical-cavity surface-emitting lasers. Using only the rather simple framework presented in this paper, one can analyze energy transport in a wide range of planar photonic devices accurately without additional difficulties or inputs from external solvers.

  • Figure
  • Figure
  • Figure
  • Figure
  • Received 22 August 2018

DOI:https://doi.org/10.1103/PhysRevE.98.063304

©2018 American Physical Society

Physics Subject Headings (PhySH)

Condensed Matter, Materials & Applied PhysicsParticles & FieldsAtomic, Molecular & OpticalInterdisciplinary PhysicsGeneral Physics

Authors & Affiliations

Pyry Kivisaari*, Mikko Partanen, and Jani Oksanen

  • Engineered Nanosystems Group, Aalto University, P.O. Box 13500, FI-00076 Aalto, Finland

  • *pyry.kivisaari@aalto.fi

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 98, Iss. 6 — December 2018

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review E

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×