• Open Access

Classical density functional theory, unconstrained crystallization, and polymorphic behavior

James F. Lutsko and Julien Lam
Phys. Rev. E 98, 012604 – Published 12 July 2018

Abstract

While in principle, classical density functional theory (cDFT) should be a powerful tool for the study of crystallization, in practice this has not so far been the case. Progress has been hampered by technical problems which have plagued the study of the crystalline systems using the most sophisticated fundamental measure theory models. In this paper, the reasons for the difficulties are examined and it is proposed that the tensor functionals currently favored are in fact numerically unstable. By reverting to an older, more heuristic model it is shown that all of the technical difficulties are eliminated. Application to a Lennard-Jones fluid results in a demonstration of power of cDFT to describe crystallization in a highly inhomogeneous system. First, we show that droplets attached to a slightly hydrophobic wall crystallize spontaneously upon being quenched. The resulting crystallites are clearly faceted structures and are predominantly HCP structures. In contrast, droplets in a fully periodic calculational cell remain stable to lower temperatures and eventually show the same spontaneous localization of the density into “atoms” but in an amorphous structure having many of the structural characteristics of a glass. A small change of the protocol leads, at the same temperature, to the formation of crystals, this time with the fcc structure typical of bulk Lennard-Jones solids. The fcc crystals have lower free energy than the amorphous structures which in turn are more stable than the liquid droplets. It is demonstrated that as the temperature is raised, the free energy differences between the structures decrease until the solid clusters become less stable than the liquid droplets and spontaneously melt. The presence of energy barriers separating the various structures is therefore clearly demonstrated.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
1 More
  • Received 26 April 2018

DOI:https://doi.org/10.1103/PhysRevE.98.012604

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

©2018 American Physical Society

Physics Subject Headings (PhySH)

Condensed Matter, Materials & Applied PhysicsStatistical Physics & ThermodynamicsPolymers & Soft Matter

Authors & Affiliations

James F. Lutsko* and Julien Lam

  • Center for Nonlinear Phenomena and Complex Systems, Code Postal 231, Université Libre de Bruxelles, Boulevard du Triomphe, 1050 Brussels, Belgium

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 98, Iss. 1 — July 2018

Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review E

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×