• Open Access

Formation of dominant mode by evolution in biological systems

Chikara Furusawa and Kunihiko Kaneko
Phys. Rev. E 97, 042410 – Published 12 April 2018

Abstract

A reduction in high-dimensional phenotypic states to a few degrees of freedom is essential to understand biological systems. Here, we show evolutionary robustness causes such reduction which restricts possible phenotypic changes in response to a variety of environmental conditions. First, global protein expression changes in Escherichia coli after various environmental perturbations were shown to be proportional across components, across different types of environmental conditions. To examine if such dimension reduction is a result of evolution, we analyzed a cell model—with a huge number of components, that reproduces itself via a catalytic reaction network—and confirmed that common proportionality in the concentrations of all components is shaped through evolutionary processes. We found that the changes in concentration across all components in response to environmental and evolutionary changes are constrained to the changes along a one-dimensional major axis, within a huge-dimensional state space. On the basis of these observations, we propose a theory in which such constraints in phenotypic changes are achieved both by evolutionary robustness and plasticity and formulate this proposition in terms of dynamical systems. Accordingly, broad experimental and numerical results on phenotypic changes caused by evolution and adaptation are coherently explained.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
3 More
  • Received 3 April 2017

DOI:https://doi.org/10.1103/PhysRevE.97.042410

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

©2018 American Physical Society

Physics Subject Headings (PhySH)

Physics of Living Systems

Authors & Affiliations

Chikara Furusawa*

  • Quantitative Biology Center (QBiC), RIKEN, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan and Universal Biology Institute, University of Tokyo, 7-3-1 Hongo, Tokyo 113-0033, Japan

Kunihiko Kaneko

  • Research Center for Complex Systems Biology, Universal Biology Institute, University of Tokyo, 3-8-1 Komaba, Tokyo 153-8902, Japan

  • *chikara.furusawa@riken.jp
  • kaneko@complex.c.u-tokyo.ac.jp

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 97, Iss. 4 — April 2018

Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review E

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×