Characteristic time scales for diffusion processes through layers and across interfaces

Elliot J. Carr
Phys. Rev. E 97, 042115 – Published 11 April 2018

Abstract

This paper presents a simple tool for characterizing the time scale for continuum diffusion processes through layered heterogeneous media. This mathematical problem is motivated by several practical applications such as heat transport in composite materials, flow in layered aquifers, and drug diffusion through the layers of the skin. In such processes, the physical properties of the medium vary across layers and internal boundary conditions apply at the interfaces between adjacent layers. To characterize the time scale, we use the concept of mean action time, which provides the mean time scale at each position in the medium by utilizing the fact that the transition of the transient solution of the underlying partial differential equation model, from initial state to steady state, can be represented as a cumulative distribution function of time. Using this concept, we define the characteristic time scale for a multilayer diffusion process as the maximum value of the mean action time across the layered medium. For given initial conditions and internal and external boundary conditions, this approach leads to simple algebraic expressions for characterizing the time scale that depend on the physical and geometrical properties of the medium, such as the diffusivities and lengths of the layers. Numerical examples demonstrate that these expressions provide useful insight into explaining how the parameters in the model affect the time it takes for a multilayer diffusion process to reach steady state.

  • Figure
  • Figure
  • Received 15 January 2018

DOI:https://doi.org/10.1103/PhysRevE.97.042115

©2018 American Physical Society

Physics Subject Headings (PhySH)

Statistical Physics & Thermodynamics

Authors & Affiliations

Elliot J. Carr*

  • School of Mathematical Sciences, Queensland University of Technology (QUT), Brisbane, Australia

  • *elliot.carr@qut.edu.au

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 97, Iss. 4 — April 2018

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review E

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×