Noise-driven current reversal and stabilization in the tilted ratchet potential subject to tempered stable Lévy noise

Mathew L. Zuparic, Alexander C. Kalloniatis, and Dale O. Roberts
Phys. Rev. E 96, 052116 – Published 13 November 2017

Abstract

We consider motion of a particle in a one-dimensional tilted ratchet potential subject to two-sided tempered stable Lévy noise characterized by strength Ω, fractional index α, skew θ, and tempering λ. We derive analytic solutions to the corresponding Fokker-Planck Lévy equations for the probability density. Due to the periodicity of the potential, we carry out reduction to a compact domain and solve for the analog of steady-state solutions which we represent as wrapped probability density functions. By solving for the expected value of the current associated with the particle motion, we are able to determine thresholds for metastability of the system, namely when the particle stabilizes in a well of the potential and when the particle is in motion, for example as a consequence of the tilt of the potential. Because the noise may be asymmetric, we examine the relationship between skew of the noise and the tilt of the potential. With tempering, we find two remarkable regimes where the current may be reversed in a direction opposite to the tilt or where the particle may be stabilized in a well in circumstances where deterministically it should flow with the tilt.

  • Figure
  • Figure
  • Figure
  • Figure
  • Received 27 June 2017

DOI:https://doi.org/10.1103/PhysRevE.96.052116

©2017 American Physical Society

Physics Subject Headings (PhySH)

Statistical Physics & Thermodynamics

Authors & Affiliations

Mathew L. Zuparic and Alexander C. Kalloniatis

  • Defence Science and Technology Group, Canberra 2600, Australia

Dale O. Roberts

  • Australian National University, ACT Canberra 2601, Australia

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 96, Iss. 5 — November 2017

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review E

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×