Force fluctuations on a wall in interaction with a granular lid-driven cavity flow

François Kneib, Thierry Faug, Gilles Nicolet, Nicolas Eckert, Mohamed Naaim, and Frédéric Dufour
Phys. Rev. E 96, 042906 – Published 16 October 2017

Abstract

The force fluctuations experienced by a boundary wall subjected to a lid-driven cavity flow are investigated by means of numerical simulations based on the discrete-element method. The time-averaged dynamics inside the cavity volume and the resulting steady force on the wall are governed by the boundary macroscopic inertial number, the latter being derived from the shearing velocity and the confinement pressure imposed at the top. The force fluctuations are quantified through measuring both the autocorrelation of force time series and the distributions of grain-wall forces, at distinct spatial scales from particle scale to wall scale. A key result is that the grain-wall force distributions are entirely driven by the boundary macroscopic inertial number, whatever the spatial scale considered. In particular, when the wall scale is considered, the distributions are found to evolve from nearly exponential to nearly Gaussian distributions by decreasing the macroscopic inertial number. The transition from quasistatic to dense inertial flow is well identified through remarkable changes in the shapes of the distributions of grain-wall forces, accompanied by a loss of system memory in terms of the mesoscale force transmitted toward the wall.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
13 More
  • Received 9 February 2017

DOI:https://doi.org/10.1103/PhysRevE.96.042906

©2017 American Physical Society

Physics Subject Headings (PhySH)

Fluid Dynamics

Authors & Affiliations

François Kneib*, Thierry Faug, Gilles Nicolet, Nicolas Eckert§, and Mohamed Naaim

  • Université Grenoble Alpes, Irstea, ETGR, 38402 St-Martin-d'Hères, France

Frédéric Dufour

  • Université Grenoble Alpes, CNRS, 3SR, F-38000 Grenoble, France

  • *francois.kneib@irstea.fr
  • thierry.faug@irstea.fr
  • gilles.nicolet@irstea.fr
  • §nicolas.eckert@irstea.fr
  • mohamed.naaim@irstea.fr
  • frederic.dufour@3sr-grenoble.fr

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 96, Iss. 4 — October 2017

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review E

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×