Craters produced by explosions in a granular medium

F. Pacheco-Vázquez, A. Tacumá, and J. O. Marston
Phys. Rev. E 96, 032904 – Published 7 September 2017
PDFHTMLExport Citation

Abstract

We report on an experimental investigation of craters generated by explosions at the surface of a model granular bed. Following the initial blast, a pressure wave propagates through the bed, producing high-speed ejecta of grains and ultimately a crater. We analyzed the crater morphology in the context of large-scale explosions and other cratering processes. The process was analyzed in the context of large-scale explosions, and the crater morphology was compared with those resulting from other cratering processes in the same energy range. From this comparison, we deduce that craters formed through different mechanisms can exhibit fine surface features depending on their origin, at least at the laboratory scale. Moreover, unlike laboratory-scale craters produced by the impact of dense spheres, the diameter and depth do not follow a 1/4-power-law scaling with energy, rather the exponent observed herein is approximately 0.30, as has also been found in large-scale events. Regarding the ejecta curtain of grains, its expansion obeys the same time dependence followed by shock waves produced by underground explosions. Finally, from experiments in a two-dimensional system, the early cavity growth is analyzed and compared to a recent study on explosions at the surface of water.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 23 May 2017

DOI:https://doi.org/10.1103/PhysRevE.96.032904

©2017 American Physical Society

Physics Subject Headings (PhySH)

Polymers & Soft Matter

Authors & Affiliations

F. Pacheco-Vázquez1, A. Tacumá1, and J. O. Marston2

  • 1Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apartado Postal J-48, Puebla 72570, Mexico
  • 2Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, USA

Article Text (Subscription Required)

Click to Expand

Supplemental Material (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 96, Iss. 3 — September 2017

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review E

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×