Observation of a strong-coupling effect on electron-ion collisions in ultracold plasmas

Wei-Ting Chen, Craig Witte, and Jacob L. Roberts
Phys. Rev. E 96, 013203 – Published 7 July 2017

Abstract

Ultracold plasmas (UCPs) provide a well-controlled system for studying multiple aspects in plasma physics that include collisions and strong-coupling effects. By applying a short electric field pulse to an UCP, a plasma electron center-of-mass oscillation can be initiated. For accessible parameter ranges, the damping rate of this oscillation is determined by the electron-ion collision rate. We performed measurements of the oscillation damping rate with such parameters and compared the measured rates to both a molecular dynamics (MD) simulation that includes strong-coupling effects and a Monte Carlo binary collision simulation designed to predict the damping rate including only weak-coupling considerations. We found agreement between the experimentally measured damping rate and the MD result. This agreement did require including the influence of a previously unreported UCP heating mechanism whereby the presence of a dc electric field during ionization increased the electron temperature, but estimations and simulations indicate that such a heating mechanism should be present for our parameters. The measured damping rate at our coldest electron temperature conditions was much faster than the weak-coupling prediction obtained from the Monte Carlo binary collision simulation, which indicates the presence of a significant strong-coupling influence. The density averaged electron strong-coupling parameter Γ measured at our coldest electron temperature conditions was 0.35(8).

  • Figure
  • Figure
  • Received 21 February 2017

DOI:https://doi.org/10.1103/PhysRevE.96.013203

©2017 American Physical Society

Physics Subject Headings (PhySH)

Plasma Physics

Authors & Affiliations

Wei-Ting Chen, Craig Witte, and Jacob L. Roberts

  • Department of Physics, Colorado State University, Fort Collins, Colorado 80523, USA

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 96, Iss. 1 — July 2017

Reuse & Permissions
Access Options
CHORUS

Article Available via CHORUS

Download Accepted Manuscript
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review E

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×