Cable equation for general geometry

Erick J. López-Sánchez and Juan M. Romero
Phys. Rev. E 95, 022403 – Published 13 February 2017

Abstract

The cable equation describes the voltage in a straight cylindrical cable, and this model has been employed to model electrical potential in dendrites and axons. However, sometimes this equation might give incorrect predictions for some realistic geometries, in particular when the radius of the cable changes significantly. Cables with a nonconstant radius are important for some phenomena, for example, discrete swellings along the axons appear in neurodegenerative diseases such as Alzheimers, Parkinsons, human immunodeficiency virus associated dementia, and multiple sclerosis. In this paper, using the Frenet-Serret frame, we propose a generalized cable equation for a general cable geometry. This generalized equation depends on geometric quantities such as the curvature and torsion of the cable. We show that when the cable has a constant circular cross section, the first fundamental form of the cable can be simplified and the generalized cable equation depends on neither the curvature nor the torsion of the cable. Additionally, we find an exact solution for an ideal cable which has a particular variable circular cross section and zero curvature. For this case we show that when the cross section of the cable increases the voltage decreases. Inspired by this ideal case, we rewrite the generalized cable equation as a diffusion equation with a source term generated by the cable geometry. This source term depends on the cable cross-sectional area and its derivates. In addition, we study different cables with swelling and provide their numerical solutions. The numerical solutions show that when the cross section of the cable has abrupt changes, its voltage is smaller than the voltage in the cylindrical cable. Furthermore, these numerical solutions show that the voltage can be affected by geometrical inhomogeneities on the cable.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 30 June 2016
  • Revised 2 December 2016

DOI:https://doi.org/10.1103/PhysRevE.95.022403

©2017 American Physical Society

Physics Subject Headings (PhySH)

Physics of Living Systems

Authors & Affiliations

Erick J. López-Sánchez*

  • Posgrado en Ciencias Naturales e Ingeniería, Universidad Autónoma Metropolitana, Cuajimalpa and Vasco de Quiroga 4871, Santa Fe Cuajimalpa, Ciudad de México 05300, México

Juan M. Romero

  • Departamento de Matemáticas Aplicadas y Sistemas, Universidad Autónoma Metropolitana-Cuajimalpa, Vasco de Quiroga 4871, Santa Fe Cuajimalpa, Ciudad de México 05300, México

  • *lsej@unam.mx
  • jromero@correo.cua.uam.mx

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 95, Iss. 2 — February 2017

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review E

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×