• Rapid Communication

Intermediate scattering function for macromolecules in solutions probed by neutron spin echo

Yun Liu
Phys. Rev. E 95, 020501(R) – Published 16 February 2017

Abstract

The neutron-spin-echo method (NSE) is a powerful technique for studying internal dynamics of macromolecules in solutions because it can simultaneously probe length and time scales comparable to intramolecular density fluctuations of macromolecules. Recently, there has been increased, strong interest in studying protein internal motions using NSE. The coherent intermediate scattering function (ISF) measured by NSE depends on internal, rotational, and translational motions of macromolecules in solutions. It is thus critical, but highly nontrivial, to separate the internal motion from other motions in order to properly understand protein internal dynamics. Even though many experiments are performed at relatively high concentrations, current theories of calculating the ISF of concentrated protein solutions are either inaccurate or flawed by incorrect assumptions for realistic protein systems with anisotropic shapes. Here, a theoretical framework is developed to establish the quantitative relationship of different motions included in the ISF. This theory based on the dynamic decoupling approximation is applicable to a wide range of protein concentrations, including dilute cases. It is also, in general, useful for studying many other types of macromolecule systems studied by NSE.

  • Figure
  • Received 28 October 2016

DOI:https://doi.org/10.1103/PhysRevE.95.020501

©2017 American Physical Society

Physics Subject Headings (PhySH)

Physics of Living SystemsCondensed Matter, Materials & Applied PhysicsPolymers & Soft Matter

Authors & Affiliations

Yun Liu*

  • Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA and Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, USA

  • *yun.liu@nist.gov; yunliu@udel.edu

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 95, Iss. 2 — February 2017

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review E

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×