Thermal motion of a nonlinear localized pattern in a quasi-one-dimensional system

Tommy Dessup, Christophe Coste, and Michel Saint Jean
Phys. Rev. E 94, 012217 – Published 15 July 2016

Abstract

We study the dynamics of localized nonlinear patterns in a quasi-one-dimensional many-particle system near a subcritical pitchfork bifurcation. The normal form at the bifurcation is given and we show that these patterns can be described as solitary-wave envelopes. They are stable in a large temperature range and can diffuse along the chain of interacting particles. During their displacements the particles are continually redistributed on the envelope. This change of particle location induces a small modulation of the potential energy of the system, with an amplitude that depends on the transverse confinement. At high temperature, this modulation is irrelevant and the thermal motion of the localized patterns displays all the characteristics of a free quasiparticle diffusion with a diffusion coefficient that may be deduced from the normal form. At low temperature, significant physical effects are induced by the modulated potential. In particular, the localized pattern may be trapped at very low temperature. We also exhibit a series of confinement values for which the modulation amplitudes vanishes. For these peculiar confinements, the mean-square displacement of the localized patterns also evidences free-diffusion behavior at low temperature.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
6 More
  • Received 21 March 2016

DOI:https://doi.org/10.1103/PhysRevE.94.012217

©2016 American Physical Society

Physics Subject Headings (PhySH)

Nonlinear Dynamics

Authors & Affiliations

Tommy Dessup, Christophe Coste, and Michel Saint Jean

  • Laboratoire Matière et Systèmes Complexes, UMR No. 7057, CNRS, Université Paris 7 Diderot, 75205 Paris Cedex 13, France

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 94, Iss. 1 — July 2016

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review E

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×