Efficient simulation of semiflexible polymers

Debabrata Panja, Gerard T. Barkema, and J. M. J. van Leeuwen
Phys. Rev. E 92, 032603 – Published 29 September 2015
PDFHTMLExport Citation

Abstract

Using a recently developed bead-spring model for semiflexible polymers that takes into account their natural extensibility, we report an efficient algorithm to simulate the dynamics for polymers like double-stranded DNA (dsDNA) in the absence of hydrodynamic interactions. The dsDNA is modeled with one bead-spring element per base pair, and the polymer dynamics is described by the Langevin equation. The key to efficiency is that we describe the equations of motion for the polymer in terms of the amplitudes of the polymer's fluctuation modes, as opposed to the use of the physical positions of the beads. We show that, within an accuracy tolerance level of 5% of several key observables, the model allows for single Langevin time steps of 1.6, 8, 16, and 16 ps for a dsDNA model chain consisting of 64, 128, 256, and 512 base pairs (i.e., chains of 0.55, 1.11, 2.24, and 4.48 persistence lengths), respectively. Correspondingly, in 1 h, a standard desktop computer can simulate 0.23, 0.56, 0.56, and 0.26 ms of these dsDNA chains, respectively. We compare our results to those obtained from other methods, in particular, the (inextensible discretized) wormlike chain (WLC) model. Importantly, we demonstrate that at the same level of discretization, i.e., when each discretization element is one base pair long, our algorithm gains about five to six orders of magnitude in the size of time steps over the inextensible WLC model. Further, we show that our model can be mapped one on one to a discretized version of the extensible WLC model, implying that the speed-up we achieve in our model must hold equally well for the latter. We also demonstrate the use of the method by simulating efficiently the tumbling behavior of a dsDNA segment in a shear flow.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 5 July 2015

DOI:https://doi.org/10.1103/PhysRevE.92.032603

©2015 American Physical Society

Authors & Affiliations

Debabrata Panja

  • Institute for Theoretical Physics, Universiteit Utrecht, Leuvenlaan 4, 3584 CE Utrecht, The Netherlands and Institute of Physics, Universiteit van Amsterdam, Science Park 904, Postbus 94485, 1090 GL Amsterdam, The Netherlands

Gerard T. Barkema

  • Institute for Theoretical Physics, Universiteit Utrecht, Leuvenlaan 4, 3584 CE Utrecht, The Netherlands and Instituut-Lorentz, Universiteit Leiden, Niels Bohrweg 2, 2333 CA Leiden, The Netherlands

J. M. J. van Leeuwen

  • Instituut-Lorentz, Universiteit Leiden, Niels Bohrweg 2, 2333 CA Leiden, The Netherlands

Article Text (Subscription Required)

Click to Expand

Supplemental Material (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 92, Iss. 3 — September 2015

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review E

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×