• Rapid Communication

Convex hull of a Brownian motion in confinement

Marie Chupeau, Olivier Bénichou, and Satya N. Majumdar
Phys. Rev. E 91, 050104(R) – Published 22 May 2015

Abstract

We study the effect of confinement on the mean perimeter of the convex hull of a planar Brownian motion, defined as the minimum convex polygon enclosing the trajectory. We use a minimal model where an infinite reflecting wall confines the walk to one side. We show that the mean perimeter displays a surprising minimum with respect to the starting distance to the wall and exhibits a nonanalyticity for small distances. In addition, the mean span of the trajectory in a fixed direction θ]0,π/2[, which can be shown to yield the mean perimeter by integration over θ, presents these same two characteristics. This is in striking contrast to the one-dimensional case, where the mean span is an increasing analytical function. The nonmonotonicity in the two-dimensional case originates from the competition between two antagonistic effects due to the presence of the wall: reduction of the space accessible to the Brownian motion and effective repulsion.

  • Figure
  • Figure
  • Received 8 December 2014

DOI:https://doi.org/10.1103/PhysRevE.91.050104

©2015 American Physical Society

Authors & Affiliations

Marie Chupeau1, Olivier Bénichou1, and Satya N. Majumdar2

  • 1Laboratoire de Physique Théorique de la Matière Condensée (UMR CNRS 7600), Université Pierre et Marie Curie, 4 Place Jussieu, 75255 Paris Cedex, France
  • 2CNRS, LPTMS, Université Paris-Sud, 91405 Orsay Cedex, France

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 91, Iss. 5 — May 2015

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review E

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×