Failure of steady-state thermodynamics in nonuniform driven lattice gases

Ronald Dickman
Phys. Rev. E 90, 062123 – Published 17 December 2014

Abstract

To be useful, steady-state thermodynamics (SST) must be self-consistent and have predictive value. Consistency of SST was recently verified for driven lattice gases under global weak exchange. Here I verify consistency of SST under local (pointwise) exchange, but only in the limit of a vanishing exchange rate; for a finite exchange rate the coexisting systems have different chemical potentials. I consider the lattice gas with nearest-neighbor exclusion on the square lattice, with nearest-neighbor hopping, and with hopping to both nearest and next-nearest neighbors. I show that SST does not predict the coexisting densities under a nonuniform drive or in the presence of a nonuniform density provoked by a hard wall or nonuniform transition rates. The steady-state chemical potential profile is, moreover, nonuniform at coexistence, contrary to the basic principles of thermodynamics. Finally, I discuss examples of a pair of systems possessing identical steady states but which do not coexist when placed in contact. The results of these studies confirm the validity of SST for coexistence between spatially uniform systems but cast serious doubt on its consistency and predictive value in systems with a finite rate of particle exchange between coexisting regions exhibiting a nonuniform particle density.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
6 More
  • Received 29 July 2014
  • Corrected 31 December 2014

DOI:https://doi.org/10.1103/PhysRevE.90.062123

©2014 American Physical Society

Corrections

31 December 2014

Erratum

Authors & Affiliations

Ronald Dickman*

  • Departamento de Física and National Institute of Science and Technology for Complex Systems, ICEx, Universidade Federal de Minas Gerais, C. P. 702, 30123-970 Belo Horizonte, Minas Gerais, Brazil

  • *dickman@fisica.ufmg.br

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 90, Iss. 6 — December 2014

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review E

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×