Out-of-equilibrium evolution of kinetically constrained many-body quantum systems under purely dissipative dynamics

Beatriz Olmos, Igor Lesanovsky, and Juan P. Garrahan
Phys. Rev. E 90, 042147 – Published 31 October 2014

Abstract

We explore the relaxation dynamics of quantum many-body systems that undergo purely dissipative dynamics through non-classical jump operators that can establish quantum coherence. Our goal is to shed light on the differences in the relaxation dynamics that arise in comparison to systems evolving via classical rate equations. In particular, we focus on a scenario where both quantum and classical dissipative evolution lead to a stationary state with the same values of diagonal or “classical” observables. As a basis for illustrating our ideas we use spin systems whose dynamics becomes correlated and complex due to dynamical constraints, inspired by kinetically constrained models (KCMs) of classical glasses. We show that in the quantum case the relaxation can be orders of magnitude slower than the classical one due to the presence of quantum coherences. Aspects of these idealized quantum KCMs become manifest in a strongly interacting Rydberg gas under electromagnetically induced transparency (EIT) conditions in an appropriate limit. Beyond revealing a link between this Rydberg gas and the rather abstract dissipative KCMs of quantum glassy systems, our study sheds light on the limitations of the use of classical rate equations for capturing the non-equilibrium behavior of this many-body system.

  • Figure
  • Figure
  • Figure
  • Figure
  • Received 30 June 2014
  • Revised 16 September 2014

DOI:https://doi.org/10.1103/PhysRevE.90.042147

©2014 American Physical Society

Authors & Affiliations

Beatriz Olmos, Igor Lesanovsky, and Juan P. Garrahan

  • School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 90, Iss. 4 — October 2014

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review E

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×