Analytic solution for heat flow through a general harmonic network

Nahuel Freitas and Juan Pablo Paz
Phys. Rev. E 90, 042128 – Published 20 October 2014; Erratum Phys. Rev. E 90, 069903 (2014)

Abstract

We present an analytic expression for the heat current through a general harmonic network coupled with Ohmic reservoirs. We use a method that enables us to express the stationary state of the network in terms of the eigenvectors and eigenvalues of a generalized cubic eigenvalue problem. In this way, we obtain exact formulas for the heat current and the local temperature inside the network. Our method does not rely on the usual assumptions of weak coupling to the environments or on the existence of an infinite cutoff in the environmental spectral densities. We use this method to study nonequilibrium processes without the weak coupling and Markovian approximations. As a first application of our method, we revisit the problem of heat conduction in two- and three-dimensional crystals with binary mass disorder. We complement previous results showing that for small systems the scaling of the heat current with the system size greatly depends on the strength of the interaction between system and reservoirs. This somewhat counterintuitive result seems not to have been noticed before.

  • Figure
  • Figure
  • Figure
  • Received 12 September 2013
  • Revised 9 September 2014

DOI:https://doi.org/10.1103/PhysRevE.90.042128

©2014 American Physical Society

Erratum

Authors & Affiliations

Nahuel Freitas and Juan Pablo Paz

  • Departamento de Física, FCEyN, UBA, Pabellón 1, Ciudad Universitaria, 1428 Buenos Aires, Argentina and Instituto de Física de Buenos Aires, UBA CONICET, Pabellón 1, Ciudad Universitaria, 1428 Buenos Aires, Argentina

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 90, Iss. 4 — October 2014

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review E

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×