Dynamic patterns and their interactions in networks of excitable elements

Pulin Gong, Harrison Steel, Peter Robinson, and Yang Qi
Phys. Rev. E 88, 042821 – Published 30 October 2013

Abstract

Formation of localized propagating patterns is a fascinating self-organizing phenomenon that happens in a wide range of spatially extended, excitable systems in which individual elements have resting, activated, and refractory states. Here we study a type of stochastic three-state excitable network model that has been recently developed; this model is able to generate a rich range of pattern dynamics, including localized wandering patterns and localized propagating patterns with crescent shapes and long-range propagation. The collective dynamics of these localized patterns have anomalous subdiffusive dynamics before symmetry breaking and anomalous superdiffusive dynamics after that, showing long-range spatiotemporal coherence in the system. In this study, the stability of the localized wandering patterns is analyzed by treating an individual localized pattern as a subpopulation to develop its average response function. This stability analysis indicates that when the average refractory period is greater than a certain value, there are too many elements in the refractory state after being activated to allow the subpopulation to support a self-sustained pattern; this is consistent with symmetry breaking identified by using an order parameter. Furthermore, in a broad parameter space, the simple network model is able to generate a range of interactions between different localized propagating patterns including repulsive collisions and partial and full annihilations, and interactions between localized propagating patterns and the refractory wake behind others; in this study, these interaction dynamics are systematically quantified based on their relative propagation directions and the resultant angles between them before and after their collisions. These results suggest that the model potentially provides a modeling framework to understand the formation of localized propagating patterns in a broad class of systems with excitable properties.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
3 More
  • Received 18 June 2013

DOI:https://doi.org/10.1103/PhysRevE.88.042821

©2013 American Physical Society

Authors & Affiliations

Pulin Gong*, Harrison Steel, Peter Robinson, and Yang Qi

  • School of Physics, University of Sydney, NSW 2006, Australia

  • *p.gong@physics.usyd.edu.au

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 88, Iss. 4 — October 2013

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review E

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×