Random sequential renormalization and agglomerative percolation in networks: Application to Erdös-Rényi and scale-free graphs

Golnoosh Bizhani, Peter Grassberger, and Maya Paczuski
Phys. Rev. E 84, 066111 – Published 15 December 2011

Abstract

We study the statistical behavior under random sequential renormalization (RSR) of several network models including Erdös-Rényi (ER) graphs, scale-free networks, and an annealed model related to ER graphs. In RSR the network is locally coarse grained by choosing at each renormalization step a node at random and joining it to all its neighbors. Compared to previous (quasi-)parallel renormalization methods [Song et al., Nature (London) 433, 392 (2005)], RSR allows a more fine-grained analysis of the renormalization group (RG) flow and unravels new features that were not discussed in the previous analyses. In particular, we find that all networks exhibit a second-order transition in their RG flow. This phase transition is associated with the emergence of a giant hub and can be viewed as a new variant of percolation, called agglomerative percolation. We claim that this transition exists also in previous graph renormalization schemes and explains some of the scaling behavior seen there. For critical trees it happens as N/N00 in the limit of large systems (where N0 is the initial size of the graph and N its size at a given RSR step). In contrast, it happens at finite N/N0 in sparse ER graphs and in the annealed model, while it happens for N/N01 on scale-free networks. Critical exponents seem to depend on the type of the graph but not on the average degree and obey usual scaling relations for percolation phenomena. For the annealed model they agree with the exponents obtained from a mean-field theory. At late times, the networks exhibit a starlike structure in agreement with the results of Radicchi et al. [Phys. Rev. Lett. 101, 148701 (2008)]. While degree distributions are of main interest when regarding the scheme as network renormalization, mass distributions (which are more relevant when considering “supernodes” as clusters) are much easier to study using the fast Newman-Ziff algorithm for percolation, allowing us to obtain very high statistics.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
17 More
  • Received 23 September 2011

DOI:https://doi.org/10.1103/PhysRevE.84.066111

©2011 American Physical Society

Authors & Affiliations

Golnoosh Bizhani, Peter Grassberger, and Maya Paczuski

  • Complexity Science Group, University of Calgary, Calgary, Canada T2N 1N4

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 84, Iss. 6 — December 2011

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review E

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×