Superdiffusion induced by a long-correlated external random force

M. A. Despósito
Phys. Rev. E 84, 061114 – Published 7 December 2011

Abstract

We consider a particle immersed in a thermal reservoir and simultaneously subjected to an external random force that drives the system to a nonequilibrium situation. Starting from a Langevin equation description, we derive exact expressions for the mean-square displacement and the velocity autocorrelation function of the diffusing particle. An effective temperature is introduced to characterize the deviation from the internal equilibrium situation. Using a power-law force autocorrelation function, the mean-square displacement and the velocity autocorrelation function are analytically obtained in terms of Mittag-Leffler functions. In this case, we show that the present model exhibits a superdiffusive regime as a consequence of the competition between passive and active processes.

  • Figure
  • Figure
  • Figure
  • Received 4 October 2011

DOI:https://doi.org/10.1103/PhysRevE.84.061114

©2011 American Physical Society

Authors & Affiliations

M. A. Despósito*

  • Departamento de Física e Instituto de Física de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 1, Ciudad Universitaria, ES-1428 Buenos Aires, Argentina

  • *mad@df.uba.ar

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 84, Iss. 6 — December 2011

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review E

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×