Maier-Saupe-type theory of ferroelectric nanoparticles in nematic liquid crystals

Lena M. Lopatina and Jonathan V. Selinger
Phys. Rev. E 84, 041703 – Published 11 October 2011

Abstract

Several experiments have reported that ferroelectric nanoparticles have drastic effects on nematic liquid crystals—increasing the isotropic-nematic transition temperature by about 5 K, and greatly increasing the sensitivity to applied electric fields. In a recent paper [Lopatina and Selinger, Phys. Rev. Lett. 102, 197802 (2009)], we modeled these effects through a Landau theory, based on coupled orientational order parameters for the liquid crystal and the nanoparticles. This model has one important limitation: Like all Landau theories, it involves an expansion of the free energy in powers of the order parameters, and hence it overestimates the order parameters that occur in the low-temperature phase. For that reason, we now develop a new Maier-Saupe-type model, which explicitly shows the low-temperature saturation of the order parameters. This model reduces to the Landau theory in the limit of high temperature or weak coupling, but shows different behavior in the opposite limit. We compare these calculations with experimental results on ferroelectric nanoparticles in liquid crystals.

  • Figure
  • Figure
  • Received 17 May 2011

DOI:https://doi.org/10.1103/PhysRevE.84.041703

©2011 American Physical Society

Authors & Affiliations

Lena M. Lopatina and Jonathan V. Selinger*

  • Liquid Crystal Institute, Kent State University, Kent, Ohio 44242, USA

  • *jselinge@kent.edu

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 84, Iss. 4 — October 2011

Reuse & Permissions
Access Options
CHORUS

Article Available via CHORUS

Download Accepted Manuscript
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review E

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×