Stochastic flux freezing and magnetic dynamo

Gregory L. Eyink
Phys. Rev. E 83, 056405 – Published 27 May 2011

Abstract

Magnetic flux conservation in turbulent plasmas at high magnetic Reynolds numbers is argued neither to hold in the conventional sense nor to be entirely broken, but instead to be valid in a statistical sense associated to the “spontaneous stochasticity” of Lagrangian particle trajectories. The latter phenomenon is due to the explosive separation of particles undergoing turbulent Richardson diffusion, which leads to a breakdown of Laplacian determinism for classical dynamics. Empirical evidence is presented for spontaneous stochasticity, including numerical results. A Lagrangian path-integral approach is then exploited to establish stochastic flux freezing for resistive hydromagnetic equations and to argue, based on the properties of Richardson diffusion, that flux conservation must remain stochastic at infinite magnetic Reynolds number. An important application of these results is the kinematic, fluctuation dynamo in nonhelical, incompressible turbulence at magnetic Prandtl number (Prm) equal to unity. Numerical results on the Lagrangian dynamo mechanisms by a stochastic particle method demonstrate a strong similarity between the Prm=1 and 0 dynamos. Stochasticity of field-line motion is an essential ingredient of both. Finally, some consequences for nonlinear magnetohydrodynamic turbulence, dynamo, and reconnection are briefly considered.

    • Received 20 November 2010

    DOI:https://doi.org/10.1103/PhysRevE.83.056405

    ©2011 American Physical Society

    Authors & Affiliations

    Gregory L. Eyink

    • Department of Applied Mathematics & Statistics and Department of Physics & Astronomy, The Johns Hopkins University, Baltimore, Maryland 21218, USA

    Article Text (Subscription Required)

    Click to Expand

    References (Subscription Required)

    Click to Expand
    Issue

    Vol. 83, Iss. 5 — May 2011

    Reuse & Permissions
    Access Options
    CHORUS

    Article Available via CHORUS

    Download Accepted Manuscript
    Author publication services for translation and copyediting assistance advertisement

    Authorization Required


    ×
    ×

    Images

    ×

    Sign up to receive regular email alerts from Physical Review E

    Log In

    Cancel
    ×

    Search


    Article Lookup

    Paste a citation or DOI

    Enter a citation
    ×