Fluctuation in electrolyte solutions: The self energy

Zhen-Gang Wang
Phys. Rev. E 81, 021501 – Published 9 February 2010

Abstract

We address the issue of the self energy of the mobile ions in electrolyte solutions within a general Gaussian renormalized fluctuation theory using a field-theoretic approach. We introduce the Born radii of the ions in the form of a charge distribution allowing for different Born radii between the cations and anions. The model thus automatically yields a theory free of divergences and accounts for the solvation of the ions at the level of continuous dielectric media. In an inhomogeneous dielectric medium, the self energy is in general position dependent and differences in the self energy between cations and anions can give rise to local charge separation in a macroscopically neutral system. Treating the Born radius a as a smallness parameter, we show that the self energy can be split into an O(a1) nonuniversal contribution and an O(a0) universal contribution that depends only on the ion concentration, valency, and the spatially varying dielectric constant. For a weakly inhomogeneous dielectric medium, the nonuniversal part of the self energy is shown to have the form of the Born energy with the local dielectric constant. This self energy is incorporated into the Poisson-Boltzmann equation as a simple means of including this local fluctuation effect in a mean-field theory. We illustrate the phenomenon of charge separation by considering cations and anions of difference sizes and valencies in a periodic dielectric medium.

  • Received 12 August 2009

DOI:https://doi.org/10.1103/PhysRevE.81.021501

©2010 American Physical Society

Authors & Affiliations

Zhen-Gang Wang*

  • Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA

  • *zgw@caltech.edu

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 81, Iss. 2 — February 2010

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review E

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×