Control of radial fingering patterns: A weakly nonlinear approach

Eduardo O. Dias and José A. Miranda
Phys. Rev. E 81, 016312 – Published 15 January 2010

Abstract

It is well known that the constant injection rate flow in radial Hele-Shaw cells leads to the formation of highly branched patterns, where finger tip-splitting events are plentiful. Different kinds of patterns arise in the lifting Hele-Shaw flow problem, where the cell’s gap width grows linearly with time. In this case, the morphology of the emerging structures is characterized by the strong competition among inward moving fingers. By employing a mode-coupling theory we find that both finger tip-splitting and finger competition can be restrained by properly adjusting the injection rate and the time-dependent gap width, respectively. Our theoretical model approaches the problem analytically and is capable of capturing these important controlling mechanisms already at weakly nonlinear stages of the dynamics.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 14 October 2009

DOI:https://doi.org/10.1103/PhysRevE.81.016312

©2010 American Physical Society

Authors & Affiliations

Eduardo O. Dias and José A. Miranda*

  • Departamento de Física, LFTC, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil

  • *jme@df.ufpe.br

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 81, Iss. 1 — January 2010

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review E

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×