Renormalization of stochastic lattice models: Epitaxial surfaces

Christoph A. Haselwandter and Dimitri D. Vvedensky
Phys. Rev. E 77, 061129 – Published 20 June 2008

Abstract

We present the application of a method [C. A. Haselwandter and D. D. Vvedensky, Phys. Rev. E 76, 041115 (2007)] for deriving stochastic partial differential equations from atomistic processes to the morphological evolution of epitaxial surfaces driven by the deposition of new material. Although formally identical to the one-dimensional (1D) systems considered previously, our methodology presents substantial additional technical issues when applied to two-dimensional (2D) surfaces. Once these are addressed, subsequent coarse-graining is accomplished as before by calculating renormalization-group (RG) trajectories from initial conditions determined by the regularized atomistic models. Our applications are to the Edwards-Wilkinson (EW) model [S. F. Edwards and D. R. Wilkinson, Proc. R. Soc. London, Ser. A 381, 17 (1982)], the Wolf-Villain (WV) model [D. E. Wolf and J. Villain, Europhys. Lett. 13, 389 (1990)], and a model with concurrent random deposition and surface diffusion. With our rules for the EW model no appreciable crossover is obtained for either 1D or 2D substrates. For the 1D WV model, discussed previously, our analysis reproduces the crossover sequence known from kinetic Monte Carlo (KMC) simulations, but for the 2D WV model, we find a transition from smooth to unstable growth under repeated coarse-graining. Concurrent surface diffusion does not change this behavior, but can lead to extended transient regimes with kinetic roughening. This provides an explanation of recent experiments on Ge(001) with the intriguing conclusion that the same relaxation mechanism responsible for ordered structures during the early stages of growth also produces an instability at longer times that leads to epitaxial breakdown. The RG trajectories calculated for concurrent random deposition and surface diffusion reproduce the crossover sequences observed with KMC simulations for all values of the model parameters, and asymptotically always approach the fixed point corresponding to the equation proposed by Villain [J. Phys. I 1, 19 (1991)] and by Lai and Das Sarma [Phys. Rev. Lett. 66, 2899 (1991)]. We conclude with a discussion of the application of our methodology to other growth settings.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
3 More
  • Received 28 December 2007

DOI:https://doi.org/10.1103/PhysRevE.77.061129

©2008 American Physical Society

Authors & Affiliations

Christoph A. Haselwandter

  • Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

Dimitri D. Vvedensky

  • The Blackett Laboratory, Imperial College London, London SW7 2BW, United Kingdom

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 77, Iss. 6 — June 2008

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review E

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×