Alternative approach to the solution of the dispersion relation for a generalized lattice Boltzmann equation

T. Reis and T. N. Phillips
Phys. Rev. E 77, 026702 – Published 8 February 2008

Abstract

The simplest and most efficient lattice Boltzmann model that is able to recover the Navier-Stokes equations is based on a single-parameter scattering matrix, where the parameter is the first nonzero eigenvalue of the collision matrix. This simple model, based on a single relaxation time, has many shortcomings. Among these is the lack of freedom to extend the model to complex fluids whose stress tensors are characterized by more complicated constitutive relations. The lattice Boltzmann methodology may be generalized by considering the full collision matrix and tuning the matrix elements to obtain the desired macroscopic properties. The generalized hydrodynamics of a generalized lattice Boltzmann equation (LBE) was studied by Lallemand and Luo [Phys. Rev. E 61, 6546 (2000)] by solving the dispersion equation of the linearized LBE. In this paper, an alternative approach to solving the dispersion equation based on a formal perturbation analysis is described. The methodology outlined is systematic, can be readily applied to other lattices, and does not require the reciprocals of the relaxation times to be small.

  • Figure
  • Received 1 June 2007

DOI:https://doi.org/10.1103/PhysRevE.77.026702

©2008 American Physical Society

Authors & Affiliations

T. Reis and T. N. Phillips

  • School of Mathematics, Cardiff University, Cardiff, CF24 4AG, United Kingdom

Comments & Replies

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 77, Iss. 2 — February 2008

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review E

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×