Growth and decay of localized disturbances on a surfactant-coated spreading film

Benjamin J. Fischer and Sandra M. Troian
Phys. Rev. E 67, 016309 – Published 31 January 2003
PDFExport Citation

Abstract

If the surface of a quiescent thin liquid film is suddenly coated by a patch of surface active material like a surfactant monolayer, the film is set in motion and begins spreading. An insoluble surfactant will rapidly attempt to coat the entire surface of the film thereby minimizing the liquid’s surface tension. The shear stress that develops during the spreading process produces a maximum in surface velocity in the region where the moving film meets the quiescent layer. This region is characterized by a shock front with large interfacial curvature and a corresponding local buildup of surfactant which creates a spike in the concentration gradient. In this paper, we investigate the sensitivity of this region to infinitesimal disturbances. Accordingly, we introduce a measure of disturbance amplification and transient growth analogous to a kinetic energy that couples variations in film thickness to the surfactant concentration. These variables undergo significant amplification during the brief period in which they are convected past the downstream tip of the monolayer, where the variation in concentration gradient and surface curvature are largest. Once they migrate past this sensitive area, the perturbations weaken considerably and the system approaches a stable configuration. It appears that the localized disturbances of the type we consider here, cannot sustain asymptotic instability. Nonetheless, our study of the dynamics leading to the large transient growth clearly illustrates how the coupling of Marangoni and capillary forces work in unison to stabilize the spreading process against localized perturbations.

  • Received 8 March 2002

DOI:https://doi.org/10.1103/PhysRevE.67.016309

©2003 American Physical Society

Authors & Affiliations

Benjamin J. Fischer and Sandra M. Troian*

  • Department of Chemical Engineering, Princeton University, Princeton, New Jersey 08544-5263

  • *Electronic address: stroian@princeton.edu; URL:www.princeton.edu/stroian

References (Subscription Required)

Click to Expand
Issue

Vol. 67, Iss. 1 — January 2003

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review E

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×