Neural-network analysis of the vibrational spectra of N-acetyl L-alanyl N-methyl amide conformational states

H. G. Bohr, K. Frimand, K. J. Jalkanen, R. M. Nieminen, and S. Suhai
Phys. Rev. E 64, 021905 – Published 20 July 2001
PDFExport Citation

Abstract

Density-functional theory (DFT) calculations utilizing the Becke 3LYP hybrid functional have been carried out for N-acetyl L-alanine N-methylamide and examined with respect to the effect of water on the structure, the vibrational frequencies, vibrational absorption (VA), vibrational circular dichroism (VCD), Raman spectra, and Raman optical activity (ROA) intensities. The large changes due to hydration in the structures, and the relative stability of the conformer, reflected in the VA, VCD, Raman spectra, and ROA spectra observed experimentally, are reproduced by the DFT calculations. A neural network has been constructed for reproducing the inverse scattering data (we infer the structural coordinates from spectroscopic data) that the DFT method could produce. The purpose of the network has also been to generate the large set of conformational states associated with each set of spectroscopic data for a given conformer of the molecule by interpolation. Finally the neural network performances are used to monitor a sensitivity analysis of the importance of secondary structures and the influence of the solvent. The neural network is shown to be good in distinguishing the different conformers of the small alanine peptide, especially in the gas phase.

  • Received 22 March 2000

DOI:https://doi.org/10.1103/PhysRevE.64.021905

©2001 American Physical Society

Authors & Affiliations

H. G. Bohr* and K. Frimand

  • Department of Physics, The Technical University of Denmark, DK-2800 Lyngby, Denmark

K. J. Jalkanen and R. M. Nieminen

  • Laboratory of Physics, Helsinki University of Technology, P.O. Box 1100, Otakaari 1 M, FIN-02015 HUT, Finland

S. Suhai

  • German Cancer Research Center, Im Neuenheimer Feld 280, D-69121 Heidelberg, Germany

  • *Corresponding author.
  • Present address: Steinbeis Center for Genome Informatics, Im Neuenheimer Feld 370/42, D-69120 Heidelberg, Germany.

References (Subscription Required)

Click to Expand
Issue

Vol. 64, Iss. 2 — August 2001

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review E

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×