Comparison of rigidity and connectivity percolation in two dimensions

C. Moukarzel and P. M. Duxbury
Phys. Rev. E 59, 2614 – Published 1 March 1999
PDFExport Citation

Abstract

Using a recently developed algorithm for generic rigidity of two-dimensional graphs, we analyze rigidity and connectivity percolation transitions in two dimensions on lattices of linear size up to L=4096. We compare three different universality classes: the generic rigidity class, the connectivity class, and the generic “braced square net”(GBSN). We analyze the spanning cluster density P, the backbone density PB, and the density of dangling ends PD. In the generic rigidity (GR) and connectivity cases, the load-carrying component of the spanning cluster, the backbone, is fractal at pc, so that the backbone density behaves as B(ppc)β for p>pc. We estimate βgr=0.25±0.02 for generic rigidity and βc=0.467±0.007 for the connectivity case. We find the correlation length exponents νgr=1.16±0.03 for generic rigidity compared to the exact value for connectivity, νc=43. In contrast the GBSN undergoes a first-order rigidity transition, with the backbone density being extensive at pc, and undergoing a jump discontinuity on reducing p across the transition. We define a model which tunes continuously between the GBSN and GR classes, and show that the GR class is typical.

  • Received 22 September 1998

DOI:https://doi.org/10.1103/PhysRevE.59.2614

©1999 American Physical Society

Authors & Affiliations

C. Moukarzel*

  • Instituto de Física, Universidade Federal Fluminense, CEP 24210-340, Niteroi, RJ, Brazil

P. M. Duxbury

  • Department of Physics and Astronomy and Center for Fundamental Materials Research, Michigan State University, East Lansing, Michigan 48824

  • *Electronic address: cristian@if.uff.br

References (Subscription Required)

Click to Expand
Issue

Vol. 59, Iss. 3 — March 1999

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review E

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×