Periodic, quasiperiodic, and chaotic localized solutions of a driven, damped nonlinear lattice

Dirk Hennig
Phys. Rev. E 59, 1637 – Published 1 February 1999
PDFExport Citation

Abstract

We study the solution behavior of a damped and parametrically driven nonlinear chain modeled by a discrete nonlinear Schrödinger equation. Special attention is paid to the impact of the damping and driving terms on the existence and stability of localized solutions. Dependent upon the strength of the driving force, we find rich lattice dynamics such as stationary solitonlike solutions and periodic and quasiperiodic breathers, respectively. The latter are characterized by regular motion on tori in phase space. For a critical driving amplitude the torus is destroyed in the course of time, leaving temporarily a chaotic breather on the lattice. We call this order-chaos transition a dynamical quasiperiodic route to chaos. Eventually the chaotic breather collapses to a stable localized multisite state. Finally, it is demonstrated that above a certain amplitude of the parametric driving force no localized states exist.

  • Received 21 August 1998

DOI:https://doi.org/10.1103/PhysRevE.59.1637

©1999 American Physical Society

Authors & Affiliations

Dirk Hennig

  • Fachbereich Physik, Institut für Theoretische Physik Arnimallee 14, Freie Universität Berlin, 14195 Berlin, Germany

References (Subscription Required)

Click to Expand
Issue

Vol. 59, Iss. 2 — February 1999

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review E

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×