• Open Access

Anchoring-mediated stick-slip winding of cholesteric liquid crystals

Weichao Zheng
Phys. Rev. E 109, 044701 – Published 9 April 2024

Abstract

The stick-slip phenomenon widely exists in contact mechanics, from the macroscale to the nanoscale. During cholesteric-nematic unwinding by external fields, there is controversy regarding the role of planar surface anchoring, which may induce discontinuous stick-slip behaviors despite the well-known continuous transitions observed in past experiments. Here we observe three regimes, namely, constrained, stick-slip, and sliding-slip, under mechanical winding with different anchoring conditions, and measure the corresponding forces by the surface force balance. These behaviors result from a balance of cholesteric elastic torque and surface torque, reminiscent of the slip morphology on frictional substrates [T. G. Sano et al., Phys. Rev. Lett. 118, 178001 (2017)], and provide evidence of dynamics in static rotational friction.

  • Figure
  • Figure
  • Figure
  • Figure
  • Received 11 May 2023
  • Revised 15 November 2023
  • Accepted 13 March 2024

DOI:https://doi.org/10.1103/PhysRevE.109.044701

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Statistical Physics & Thermodynamics

Authors & Affiliations

Weichao Zheng*

  • Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, United Kingdom

  • *zwhich@outlook.com

Article Text

Click to Expand

Supplemental Material

Click to Expand

References

Click to Expand
Issue

Vol. 109, Iss. 4 — April 2024

Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review E

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×