Emergent gauge symmetry in active Brownian matter

Nathan Silvano and Daniel G. Barci
Phys. Rev. E 109, 044605 – Published 24 April 2024

Abstract

We investigate a two-dimensional system of interacting active Brownian particles. Using the Martin-Siggia-Rose-Janssen-de Dominicis formalism, we built up the generating functional for correlation functions. We study in detail the hydrodynamic regime with a constant density stationary state. Our findings reveal that, within a small density fluctuations regime, an emergent U(1) gauge symmetry arises, originated from the conservation of fluid vorticity. Consequently, the interaction between the orientational order parameter and density fluctuations can be cast into a gauge theory, where the concept of “electric charge density” aligns with the local vorticity of the original fluid. We study in detail the case of a microscopic local two-body interaction. We show that, upon integrating out the gauge fields, the stationary states of the rotational degrees of freedom satisfy a nonlocal Frank free energy for a nematic fluid. We give explicit expressions for the splay and bend elastic constants as a function of the Péclet number (Pe) and the diffusion interaction constant (kd).

  • Received 13 December 2023
  • Accepted 4 April 2024

DOI:https://doi.org/10.1103/PhysRevE.109.044605

©2024 American Physical Society

Physics Subject Headings (PhySH)

Condensed Matter, Materials & Applied PhysicsStatistical Physics & Thermodynamics

Authors & Affiliations

Nathan Silvano1,2 and Daniel G. Barci2,3

  • 1Center for Advanced Systems Understanding, Untermarkt 20, 02826 Görlitz, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
  • 2Departamento de Física Teórica, 20270-004 Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier 524, 20550-013, Rio de Janeiro, RJ, Brazil
  • 3Sorbonne Université, Laboratoire de Physique Théorique et Hautes Energies, CNRS UMR 7589, 4 Place Jussieu, 75252 Paris Cedex 05, France

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 109, Iss. 4 — April 2024

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review E

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×