• Open Access

Magnetization relaxation dynamics in polydisperse ferrofluids

Alexey O. Ivanov and Philip J. Camp
Phys. Rev. E 107, 034604 – Published 22 March 2023

Abstract

When a ferrofluid is magnetized in a strong magnetic field, and then the field is switched off, the magnetization decays from its saturation value to zero. The dynamics of this process are controlled by the rotations of the constituent magnetic nanoparticles, and for the Brownian mechanism, the respective rotation times are strongly influenced by the particle size and the magnetic dipole-dipole interactions between the particles. In this work, the effects of polydispersity and interactions on the magnetic relaxation are studied using a combination of analytical theory and Brownian dynamics simulations. The theory is based on the Fokker-Planck-Brown equation for Brownian rotation and includes a self-consistent, mean-field treatment of the dipole-dipole interactions. The most interesting predictions from the theory are that, at short times, the relaxation of each particle type is equal to its intrinsic Brownian rotation time, while at long times, each particle type has the same effective relaxation time, which is longer than any of the individual Brownian rotation times. Noninteracting particles, though, always relax at a rate controlled only by the Brownian rotation times. This illustrates the importance of including the effects of polydispersity and interactions when analyzing the results from magnetic relaxometry experiments on real ferrofluids, which are rarely monodisperse.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 14 January 2023
  • Accepted 13 March 2023

DOI:https://doi.org/10.1103/PhysRevE.107.034604

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Condensed Matter, Materials & Applied Physics

Authors & Affiliations

Alexey O. Ivanov

  • Department of Theoretical and Mathematical Physics, Ural Mathematical Center, Institute of Natural Sciences and Mathematics, Ural Federal University, 51 Lenin Avenue, Ekaterinburg 620000, Russia

Philip J. Camp*

  • School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, Scotland

  • *philip.camp@ed.ac.uk

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 107, Iss. 3 — March 2023

Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review E

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×