Quantum critical behaviors and decoherence of weakly coupled quantum Ising models within an isolated global system

Alessio Franchi, Andrea Pelissetto, and Ettore Vicari
Phys. Rev. E 107, 014113 – Published 13 January 2023

Abstract

We discuss the quantum dynamics of an isolated composite system consisting of weakly interacting many-body subsystems. We focus on one of the subsystems, S, and study the dependence of its quantum correlations and decoherence rate on the state of the weakly-coupled complementary part E, which represents the environment. As a theoretical laboratory, we consider a composite system made of two stacked quantum Ising chains, locally and homogeneously weakly coupled. One of the chains is identified with the subsystem S under scrutiny, and the other one with the environment E. We investigate the behavior of S at equilibrium, when the global system is in its ground state, and under out-of-equilibrium conditions, when the global system evolves unitarily after a quench of the coupling between S and E. When S develops quantum critical correlations in the weak-coupling regime, the associated scaling behavior crucially depends on the quantum state of E, whether it is characterized by short-range correlations (analogous to those characterizing disordered phases in closed systems), algebraically decaying correlations (typical of critical systems), or long-range correlations (typical of magnetized ordered phases). In particular, different scaling behaviors, depending on the state of E, are observed for the decoherence of the subsystem S, as demonstrated by the different power-law divergences of the decoherence susceptibility that quantifies the sensitivity of the coherence to the interaction with E.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
5 More
  • Received 20 September 2022
  • Accepted 23 December 2022

DOI:https://doi.org/10.1103/PhysRevE.107.014113

©2023 American Physical Society

Physics Subject Headings (PhySH)

Statistical Physics & ThermodynamicsCondensed Matter, Materials & Applied PhysicsAtomic, Molecular & Optical

Authors & Affiliations

Alessio Franchi1, Andrea Pelissetto2, and Ettore Vicari1

  • 1Dipartimento di Fisica dell'Università di Pisa and INFN, Largo Pontecorvo 3, I-56127 Pisa, Italy
  • 2Dipartimento di Fisica dell'Università di Roma Sapienza and INFN Sezione di Roma I, I-00185 Roma, Italy

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 107, Iss. 1 — January 2023

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review E

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×