• Letter

Geometric bounds on the power of adiabatic thermal machines

Joshua Eglinton and Kay Brandner
Phys. Rev. E 105, L052102 – Published 18 May 2022
PDFHTMLExport Citation

Abstract

We analyze the performance of slowly driven meso- and microscale refrigerators and heat engines that operate between two thermal baths with a small temperature difference. Using a general scaling argument, we show that such devices can work arbitrarily close to their Carnot limit only if heat leaks between the baths are fully suppressed. Their power output is then subject to a universal geometric bound that decays quadratically to zero at the Carnot limit. This bound can be asymptotically saturated in the quasistatic limit if the driving protocols are suitably optimized and the temperature difference between the baths goes to zero with the driving frequency. These results hold under generic conditions for any thermodynamically consistent dynamics admitting a well-defined adiabatic-response regime and a generalized Onsager symmetry. For illustration, we work out models of a qubit-refrigerator and a coherent charge pump operating as a cooling device.

  • Figure
  • Figure
  • Received 25 February 2022
  • Accepted 21 April 2022

DOI:https://doi.org/10.1103/PhysRevE.105.L052102

©2022 American Physical Society

Physics Subject Headings (PhySH)

Statistical Physics & Thermodynamics

Authors & Affiliations

Joshua Eglinton and Kay Brandner

  • School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom and Centre for the Mathematics and Theoretical Physics of Quantum Non-equilibrium Systems, University of Nottingham, Nottingham NG7 2RD, United Kingdom

Article Text (Subscription Required)

Click to Expand

Supplemental Material (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 105, Iss. 5 — May 2022

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review E

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×