• Open Access

Asymmetric invasion in anisotropic porous media

Dario Maggiolo, Francesco Picano, and Federico Toschi
Phys. Rev. E 104, 045103 – Published 14 October 2021

Abstract

We report and discuss, by means of pore-scale numerical simulations, the possibility of achieving a directional-dependent two-phase flow behavior during the process of invasion of a viscous fluid into anisotropic porous media with controlled design. By customising the pore-scale morphology and heterogeneities with the adoption of anisotropic triangular pillars distributed with quenched disorder, we observe a substantially different invasion dynamics according to the direction of fluid injection relative to the medium orientation, that is depending if the triangular pillars have their apex oriented (flow aligned) or opposed (flow opposing) to the main flow direction. Three flow regimes can be observed: (i) for low values of the ratio between the macroscopic pressure drop and the characteristic pore-scale capillary threshold, i.e., for Δp0/pc1, the fluid invasion dynamics is strongly impeded and the viscous fluid is unable to reach the outlet of the medium, irrespective of the direction of injection; (ii) for intermediate values, 1<Δp0/pc2, the viscous fluid reaches the outlet only when the triangular pillars are flow-opposing oriented; (iii) for larger values, i.e., for Δp0/pc>2, the outlet is again reached irrespective of the direction of injection. The porous medium anisotropy induces a lower effective resistance when the pillars are flow-opposing oriented, suppressing front roughening and capillary fingering. We thus argue that the invasion process occurs as long as the pressure drop is larger then the macroscopic capillary pressure determined by the front roughness, which in the case of flow-opposing pillars is halved. We present a simple approximated model, based on Darcy's assumptions, that links the macroscopic effective permeability with the directional-dependent front roughening, to predict the asymmetric invasion dynamics. This peculiar behavior opens up the possibility of fabrication of porous capillary valves to control the flow along certain specific directions.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
1 More
  • Received 23 July 2021
  • Accepted 23 September 2021

DOI:https://doi.org/10.1103/PhysRevE.104.045103

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. Funded by Bibsam.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Fluid Dynamics

Authors & Affiliations

Dario Maggiolo*

  • Department of Mechanics and Maritime Sciences, Chalmers University of Technology, Göteborg, SE-412 96, Sweden

Francesco Picano

  • Department of Industrial Engineering, University of Padova, Padova, 35131, Italy

Federico Toschi

  • Department of Applied Physics, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands

  • *maggiolo@chalmers.se

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 104, Iss. 4 — October 2021

Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review E

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×