• Open Access

Blandford-Znajek process in vacuo and its holographic dual

Ted Jacobson and Maria J. Rodriguez
Phys. Rev. D 99, 124013 – Published 11 June 2019

Abstract

Blandford and Znajek discovered a process by which a spinning black hole can transfer rotational energy to a plasma, offering a mechanism for energy and jet emissions from quasars. Here we describe a version of this mechanism that operates with only vacuum electromagnetic fields outside the black hole. The setting, which is not astrophysically realistic, involves either a cylindrical black hole or one that lives in 2+1 spacetime dimensions, and the field is given in simple, closed form for a wide class of metrics. For asymptotically anti–de Sitter black holes in 2+1 dimensions, the holographic dual of this mechanism is the transfer of angular momentum and energy, via a resistive coupling, from a rotating thermal state containing an electric field to an external charge density rotating more slowly than the thermal state. In particular, the entropy increase of the thermal state due to Joule heating matches the Bekenstein-Hawking entropy increase of the black hole.

  • Figure
  • Figure
  • Received 5 March 2019

DOI:https://doi.org/10.1103/PhysRevD.99.124013

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. Funded by SCOAP3.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Gravitation, Cosmology & Astrophysics

Authors & Affiliations

Ted Jacobson*

  • Center for Fundamental Physics, University of Maryland, College Park, Maryland 20742, USA

Maria J. Rodriguez

  • Max Planck for Gravitational Physics, Potsdam 14476, Germany and Department of Physics, Utah State University, 4415 Old Main Hill Road, Utah 84322, USA

  • *jacobson@umd.edu
  • maria.rodriguez@usu.edu; maria.rodriguez@aei.mpg.de

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 99, Iss. 12 — 15 June 2019

Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review D

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×