Black hole spin axis in numerical relativity

Robert Owen, Alex S. Fox, John A. Freiberg, and Terrence Pierre Jacques
Phys. Rev. D 99, 084031 – Published 17 April 2019

Abstract

Colliding black holes are systems of profound interest in both gravitational-wave astronomy and in gravitation theory, and a variety of methods have been developed for modeling their dynamics in detail. The features of these dynamics are determined by the masses of the holes and by the magnitudes and axes of their spins. While masses and spin magnitudes can be defined in reasonably unambiguous ways, the spin axis is a concept that, despite great physical importance, is seriously undermined by the coordinate freedom of general relativity. Despite a great wealth of detailed numerical simulations of generic spinning black hole collisions, very little attention has gone into defining or justifying the definitions of the spin axis used in the numerical relativity literature. In this paper, we summarize and contrast the various spin direction measures available in the spec code, including a comparison with a method common in other codes, we explain why these measures have shown qualitatively different nutation features than one would expect from post-Newtonian theory, and we derive and implement new measures that give much better agreement.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
7 More
  • Received 26 November 2018

DOI:https://doi.org/10.1103/PhysRevD.99.084031

© 2019 American Physical Society

Physics Subject Headings (PhySH)

Gravitation, Cosmology & Astrophysics

Authors & Affiliations

Robert Owen, Alex S. Fox, John A. Freiberg, and Terrence Pierre Jacques

  • Department of Physics and Astronomy, Oberlin College, Oberlin, Ohio 44074, USA

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 99, Iss. 8 — 15 April 2019

Reuse & Permissions
Access Options
CHORUS

Article Available via CHORUS

Download Accepted Manuscript
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review D

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×